Home Back

Exploiting different electricity markets via highly rate-mismatched modular electrochemical synthesis

nature.com 2024/10/5

Data availability

Code availability

Fig. 1: Participation in dynamic electricity markets using different technologies.
Fig. 2: Structural and electrochemical characterizations of CuHCF as a fast proton battery material.
Fig. 3: ModES with highly mismatched reaction rates.
Fig. 4: Market participation strategies and electricity cost reduction.
  1. Orvis, R. & Aggarwal, S. A Roadmap for Finding Flexibility in Wholesale Markets (Energy Innovation: Policy and Technology LLC, 2017).

  2. Kroposki, B. et al. Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag. 15, 61–73 (2017).

  3. Cao, Y., Zavala, V. M. & D’Amato, F. Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines. Appl. Energy 230, 1230–1241 (2018).

  4. Kim, K., Yang, F., Zavala, V. M. & Chien, A. A. Data centers as dispatchable loads to harness stranded power. IEEE Trans. Sustain. Energy 8, 208–218 (2016).

  5. Bird, L. et al. Wind and solar energy curtailment: a review of international experience. Renew. Sustain. Energy Rev. 65, 577–586 (2016).

  6. Schermeyer, H., Vergara, C. & Fichtner, W. Renewable energy curtailment: a case study on today’s and tomorrow’s congestion management. Energy Policy 112, 427–436 (2018).

  7. Dowling, A. W., Kumar, R. & Zavala, V. M. A multi-scale optimization framework for electricity market participation. Appl. Energy 190, 147–164 (2017).

  8. Seel, J., Millstein, D., Mills, A., Bolinger, M. & Wiser, R. Plentiful electricity turns wholesale prices negative. Adv. Appl. Energy 4, 100073 (2021).

  9. Child, M., Kemfert, C., Bogdanov, D. & Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 139, 80–101 (2019).

  10. Rehman, S., Al-Hadhrami, L. M. & Alam, M. M. Pumped hydro energy storage system: a technological review. Renew. Sustain. Energy Rev. 44, 586–598 (2015).

  11. Yang, C.-J. & Jackson, R. B. Opportunities and barriers to pumped-hydro energy storage in the United States. Renew. Sustain. Energy Rev. 15, 839–844 (2011).

  12. Budt, M., Wolf, D., Span, R. & Yan, J. A review on compressed air energy storage: basic principles, past milestones and recent developments. Appl. Energy 170, 250–268 (2016).

  13. Lund, H. & Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manage. 50, 1172–1179 (2009).

  14. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

  15. Lawder, M. T. et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications. Proc. IEEE 102, 1014–1030 (2014).

  16. de Boer, H. S., Grond, L., Moll, H. & Benders, R. The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels. Energy 72, 360–370 (2014).

  17. Götz, M. et al. Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016).

  18. Ma, J. et al. Exploiting electricity market dynamics using flexible electrolysis units for retrofitting methanol synthesis. Energy Environ. Sci. 16, 2346–2357 (2023).

  19. Cao, Y., Lee, S. B., Subramanian, V. R. & Zavala, V. M. Multiscale model predictive control of battery systems for frequency regulation markets using physics-based models. J. Process Control 90, 46–55 (2020).

  20. Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

  21. Chen, L., Dong, X., Wang, Y. & Xia, Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat. Commun. 7, 11741 (2016).

  22. Dotan, H. et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting. Nat. Energy 4, 786–795 (2019).

  23. Landman, A. et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells. Nat. Mater. 16, 646–651 (2017).

  24. Ma, Y., Guo, Z., Dong, X., Wang, Y. & Xia, Y. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis. Angew. Chem. Int. Ed. 58, 4622–4626 (2019).

  25. Rausch, B., Symes, M. D., Chisholm, G. & Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014).

  26. Symes, M. D. & Cronin, L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem. 5, 403–409 (2013).

  27. Wang, F. et al. Modular electrochemical synthesis using a redox reservoir paired with independent half-reactions. Joule 5, 149–165 (2021).

  28. Michael, K. H. et al. Pairing of aqueous and nonaqueous electrosynthetic reactions enabled by a redox reservoir electrode. J. Am. Chem. Soc. 144, 22641–22650 (2022).

  29. Wang, R. et al. Sustainable coproduction of two disinfectants via hydroxide-balanced modular electrochemical synthesis using a redox reservoir. ACS Cent. Sci. 7, 2083–2091 (2021).

  30. Persulfates Market–Forecast (2023–2028) (IndustryARC, 2023); https://www.industryarc.com/Report/16549/persulfates-market.html

  31. Chao, D. et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

  32. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2021).

  33. Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995).

  34. Ono, K. et al. Grain-boundary-free super-proton conduction of a solution-processed Prussian‐blue nanoparticle film. Angew. Chem. 129, 5623–5627 (2017).

  35. Ohkoshi, S.-i et al. High proton conductivity in Prussian blue analogues and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010).

  36. Jiang, H. et al. Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J. Am. Chem. Soc. 140, 11556–11559 (2018).

  37. Zhu, Z. et al. An ultrafast and ultra-low-temperature hydrogen gas–proton battery. J. Am. Chem. Soc. 143, 20302–20308 (2021).

  38. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

  39. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

  40. Asakura, D. et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 135, 2793–2799 (2013).

  41. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

  42. Kim, H.-S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat. Mater. 16, 454–460 (2016).

  43. Serrano, K. G. A critical review on the electrochemical production and use of peroxo-compounds. Curr. Opin. Electrochem. 27, 100679 (2021).

  44. Kumar, S. S. & Himabindu, V. Hydrogen production by PEM water electrolysis—a review. Mater. Sci. Energy Technol. 2, 442–454 (2019).

  45. Smit, W. & Hoogland, J. G. The mechanism of the anodic formation of the peroxodisulphate ion on platinum —IV. influence of alkali–metal cations. Electrochim. Acta 16, 981–993 (1971).

  46. Michaud, P. A. Preparation of peroxodisulfuric acid using boron-doped diamond thin film electrodes. Electrochem. Solid-State Lett. 3, 77–79 (1999).

People are also reading